| | | | Site Information | on | | | Me | dia | | Contaminants | S | Technology Inf | formation | | | |----------------------------------|--|---------------|--------------------------------------|-----------------|-------|---|-------------------------|--|--------------------------------------|--|--|-----------------------|---|--|---| | Site Name | Site location (city, state) | EPA
Region | Site type | Cleanup program | Scale | Geology | Media treated | Volume of media treated | Contaminants
treated | Initial contaminant concentrations | Final contaminant concentrations | Type of nanoparticle | Technology design | Vendor Information | Cleanup/ remedial
objectives and
goals | | Naval Air
Engineering Station | Lakehurst, NJ | 2 | Aircraft launching activity testing | CERCLA | Full | Coastal Plain Aquifer
consisting of mostly sand
and gravel | Soil and
Groundwater | Not available | PCE, TCE, TCA, c-DCE, vinyl chloride | Maximum VOC
concentration: 900 μg/L | Average total VOC concentration decreased by 74% | BNP | 300 lb of BNP was made into 2-g/L slurry; injected by direct push at 10 locations within the northern plume and five locations within the southern plume; 2,300 total lbs injected in 2005 and 500 total lbs injected in 2006 | PARS Environmental, Inc.,
Environmental Chemical
Corporation, Inc. | Achieve decreasing trends in contaminant concentrations | | Naval Air Station | Jacksonville, FL | 4 | Former UST Site | CERCLA | Full | Silty to fine sand from 0 to
24 feet bgs; dense clay
from 24 to 54 feet bgs | Groundwater | Not available | TCE, TCA, DCE,
vinyl chloride | Max TCE: 26,000 ug/L
Max TCA: 11,000 ug/L
Max DCE: 44,000 ug/L | Rapid reductions by 65% to 99% | BNP | 300 lb of BNP was
made into 4.5 to 10 g/L
slurry; combination of
direct push and closed-
loop recirculation | PARS Environmental, Inc. | Reduce total site contaminant mass by 40-50% | | Patrick AFB, OT-30 | Patrick AFB, FL | 4 | Industrial Area | RCRA | Full | Groundwater encountered
4 to 5 feet bgs. Upper
surficial aquifer mostly fine
to medium grained sands
with occasional silt/clay.
Silty region around 35 to 42
ft bgs holding DNAPL
migration. | Soil and
Groundwater | 600,000 ft ³ ,
22,222 cy | TCE and corresponding daughters | Initial TCE as high as 150,000 ug/L | 0 highest remaining TCE post
treatment - 3,580 ug/L | Emulsified ZVI (EZVI) | High pressure pneumatic injection | Jacobs Engineering Group
(Prime) | Reduction of
significant source
mass
(interim)/Florida
groundwater target
levels (ultimate) | | Launch Complex 15 | Cape Canaveral, Air
Force Station, FL | 4 | Abandoned
Space Launch
Complex | RCRA | Full | Groundwater encountered
4 to 5 feet bgs. Upper
surficial aquifer mostly fine
to medium grained sands
with occasional silt/clay.
Silty region around 45 ft
bgs holding DNAPL
migration. | Soil and
Groundwater | 7,500 ft ³ ,
280cy | TCE and corresponding daughters | Initial TCE as high as 439,000 ug/L | In the EZVI zone, the area with
>400,000 ug/L has dropped to
28 ug/L | Emulsified ZVI (EZVI) | Drop Tip injection | Jacobs Engineering Group
(Prime) | Reduction of
significant source
mass
(interim)/Florida
groundwater target
levels (ultimate) | | Space Launch
Complex 34 | Cape Canaveral, FL | 4 | Former Rocket
Launch Site | Not available | Pilot | Upper portion of surficial
aquifer known as Upper
Sand Unit, underlain by
Middle Fine-Grained Unit
which makes up a
hydraulic barrier to Lower
Sand Unit | Soil and
Groundwater | Not available | TCE | Not available | Average TCE reduction of 58%, where eZVI was present >80% reduction. Chloride increase is attributed to reduction of TCE, pH level changes were short lived - returned to low levels of predemonstration data, ethane and ethene concentrations increased. | Emulsified ZVI (EZVI) | High pressure injection, pneumatic injection and pressure pulse enhanced injection techniques used. 61 gallons of eZVI injected into upper sand unit; 8 injections made at depths ranging from 16 to 24 ft bgs | Geosyntec Consultants | Estimate change in TCE and DNAPL mass in test plot, evaluate change in aquifer quality due to eZVI treatment, evaluate fate of TCE due to injection, verify eZVI operating requirements and costs | | | | | | Performa | nce Informatio | n | | | | | | | |----------------------------------|--|--|---|---|---|---------------------------------------|--|--|--|--|---|--| | Site Name | Site location (city, state) | Were cleanup
goals and
objectives met?
(Yes/No) | Performance data
available
(Yes/No) | Maintenance
(O&M) activities/
monitoring system | Start date/date installed | Anticipated end date of current phase | Length of operation | Comments | Cost Information | Future
Work/Current Plans | Contact Information | Information Sources | | Naval Air
Engineering Station | Lakehurst, NJ | Yes | Yes | Groundwater
samples were taken
from 13 monitoring
wells; Six post
injection sampling
events during week
1, 2,4,8,12 and 6
months after BNP
injection | Phase I - Nov-
05 Phase II -
Jan-06 | Not available | Not available | ORP data: Pre-Injection:170 to 311 mV Post-Injection: -100 to -400 mV TCE levels decreased in half the wells and increased in the other half. ORP levels did not decline and increased in several wells. Groundwater pH remained below 6; no increase in DCE levels. Site conditions remain unfavorable for biostimulation and abiotic reduction | Not available | Not available | Paul Ingrisano, RPM
EPA, Region 2
212-637-4337
ingrisano.paul@epa.gov | Remedial Action Report for Nanoscale Particle Treatment of Groundwater at Areas I and J Naval Air Engineering Station Lakehurst, NJ; June, 2006. NAVFAC Cost and Performance Report Nanoscale Zero-Valent Iron Technologies For Source Remediation http://www.clu- in.org/download/remed/cr-05-007-env.pdf Tech News and Trends - September 2005 http://cluin.org/products/newsltrs/tnandt/view.cfm? issue=0905.cfm | | Naval Air Station | Jacksonville, FL | Yes | Yes | Groundwater
samples were
collected 6 weeks
after injection from
select wells | Jan-04 | Through 2007 | 1st monitoring
event was 5
weeks after initial
injection,
monitoring
continued
beyond the
original 9 months | ORP data: Levels dropped to below -200 mV Daughter products of parent VOCs were detected, some levels of daughter product concentrations increased sharply and then decreased; high levels of anaerobic reductive products indicated reduction by microbial action or hydrogenolysis | Not available | Establish institutional
controls to prevent
human exposure to
contaminated
groundwater until
natural attenuation
takes place | Keith Henn
Tetra Tech NUS
412-921-8146
Kieth.Henn@ttnus.com | Utilization of nanoscale zero-valent iron for
source remediation - A case study. Keith W. Henn and Dan W. Widell. Remediation, Spring 2006. NAVFAC Cost and Performance Report Nanoscale Zero-Valent Iron Technologies For Source Remediation http://www.clu-in.org/download/remed/cr-05-007-env.pdf; Email from Keith Henn to Marti Otto dated 11/24/2004; Henn and Waddell. 2005. U.S. EPA Nanotechnology Workshop | | Patrick AFB, OT-30 | Patrick AFB, FL | TBD | Yes | Semi-annual
monitoring | Nov-05 | 1-Nov-10 | On-going,
minimum 5 years | ORP and DO decreasing | Unit cost, \$180/cy
Monitoring: ~\$70,000/yr
Capital costs: \$1M eZVI, \$1M
Pneumatic injection contractor
Total remedial cost: \$4M | Site currently in long
term performance
monitoring, evaluating
impacts to plume post
source reduction | Mark Kershner
Mark.Kershner@patrick.af.
mil | OT-30 Corrective Measure Implementation (CMI)
Report | | Launch Complex 15 | Cape Canaveral, Air
Force Station, FL | TBD | Yes | Semi-annual
monitoring | Feb-06 | 1-Feb-11 | On-going,
minimum 5 years | ORP and DO decreasing | Monitoring: \$40K/yr | Site currently in long
term performance
monitoring, evaluating
impacts to plume post
source reduction | Mark Kershner
Mark.Kershner@patrick.af.
mil | Space Launch Complex 15 Groundwater
Remediation Report | | Space Launch
Complex 34 | Cape Canaveral, FL | Yes | Yes | Soil sampling was conducted (from groundwater table down to lower sand unit) prior to injection, directly after injection and 6 weeks after injection; groundwater samples were taken by vendor from multilevel samplers within plot area | Jun-02 | Not available | 8 months | ORP and DO decreased slightly
after the eZVI injection;
groundwater pH remained stable | Site characterization cost:
\$352,000
Performance assessment
cost: \$275,000
Vendor total: \$327,000 | Not available | Suzanne O'Hara
Geosyntec Consultants
519-822-2230 ext.234
sohara@geosyntec.com
Jacqueline Quinn
NASA
321-867-8410 | Demonstration of in situ Dehalogenation of DNAPL Through Injection of Emulsified Zero-Valent Iron at Launch Complex 34 in Cape Canaveral Air Force Station, FL Battelle, September 10, 2004 Nanotechnology Applications for Remediation: Cost-Effective and Rapid Technologies Removal of Contaminants From Soli, Groundwater and Aqueous Environments Greg Wilson http://es.epa.gov/ncer/publications/meetings/8-18-04/ppt/greg_wilson.ppt#256,1,Nanotechnology%20Applications%20for%20Remediation:%20Cost-Effective%20and%20Remodiation:%20Cost-Effective%20and%20Contaminants%20From%20 Soil,%20Ground%20Water,%20and%20Aqueous %20Environments | | | | | Site Informati | on | | | Me | dia | 1 | Contaminants | 3 | Technology In | formation | | T | |--|-----------------------------|---------------|--|--------------------|-------|---|-------------------------|-------------------------|---------------------------------|---|----------------------------------|----------------------|--|-----------------------------------|---| | Site Name | Site location (city, state) | EPA
Region | Site type | Cleanup program | Scale | Geology | Media treated | Volume of media treated | Contaminants
treated | Initial contaminant
concentrations | Final contaminant concentrations | Type of nanoparticle | Technology design | Vendor Information | Cleanup/ remedial
objectives and
goals | | Parris Island | Port Royal, SC | 4 | Marine Corps
Recruit Depot
Former Dry
Cleaner | CERCLA/
Private | Pilot | Small, relatively flat, sandy island with minimal topographic relief. Highest elevation on site is approximately 9 feet above mean sea level (msl). Soil present is from Seabrook, Capers, and Bohicket series. 15 different soil types. | Soil and
Groundwater | Not available | PCE, TCE, c-DCE, vinyl chloride | Groundwater:
Max PCE: 32,000 ug/L
Max TCE: 10,000 ug/L
Max c-DCE: 3,400 ug/L
Max vinyl chloride: 710 ug/L | Not available | EZVI | October 2006: Injected 17 barrels EZVI (55 gallons/barrel) at two injection plots. Direct push and pneumatic injection600 gallons of EZVI were injected into the pneumatic test plot using pneumatic injection technique from 4 to 19 ft bgs; injected -150 gal of EZVI into a direct injection plot using direct push rig from approximately 6 to 12 ft bgs | Geosyntec Consultants | - Evaluate the long-
term performance of
nanoscale EZVI
injected into the
saturated zone to
enhance in situ
dehalogenation of
DNAPLs containing
TCE.
- Estimate change in
PCE and DNAPL
mass in test plot,
evaluate change in
aquifer quality due
to EZVI treatment,
evaluate injection
technologies, verify
eZVI operating
requirements and
costs | | Vandenberg Air
Force Base | Santa Maria, CA | 9 | Missile Launch
Pad | CERCLA | Pilot | Interbedded sands, silts, and clays referred to as the Orcutt Formation; bedrock encountered below the alluvium at depths of approximately 40 to 50 feet bgs | Groundwater | Not available | TCE, DCE | TCE: 2.5 mg/L | Not available | ВNР | Not available | Not available | Not available | | Phoenix Goodyear
Airport - North
(Unidynamics)
Phase I | Goodyear, AZ | 9 | Former Missile
development
R&D facility | CERCLA | Pilot | Alluvial deposits of
Western Salt River Valley.
Deposits consist of upper
alluvial unit, middle fine-
grained unit, and lower
conglomerate unit
Groundwater at 85ft bgs.
Target injection interval ad
110 to 120 ft bgs. | Groundwater | Not available | TCE, PCE,
Perchlorate | Up to 39,000 ug/L | Not available | nZVI | Injection of 30g/L nZVI
slurry in water through
injection well with 10-
foot long 6-inch
diameter stainless steel
wire wrapped 0.03-slot
screen. Injection below
packer placed in well
casing. | Polyflon Company
PolyMetallix™ | Achieve target compound concentration decreases in source area; Collect information for design of full scale. | | Phoenix Goodyear
Airport - North
(Unidynamics)
Phase II | Goodyear, AZ | 9 | Former Missile
development
R&D facility | CERCLA | Pilot | Alluvial deposits of
Western Salt River Valley.
Deposits consist of upper
alluvial unit, middle fine-
grained unit, and lower
conglomerate unit
Groundwater at 85 ft bgs.
Target injection interval ad
110 to 120 ft bgs. | Groundwater | Not available | TCE, PCE,
Perchlorate | 3,500 to 11,000 ug/L | Not available | nZVI | Gravity feed nZVI 10,400 liters (2,750 gallons) of a 2.1 g/L nZVI suspension totaling 22 kg (49 libs) of nZVI injected through injection well with 10 foot long 6 inch diameter stainless steel wire wrapped 0.03 slot screen. Used deoxygenated site water, sodium hexametaphosphate dispersing agent, and onsite colloid mill to address potential agglomeration issues. | Polyflon Company
PolyMetallix™ | Achieve target compound concentration decreases in source area; Collect information for design of full scale. | | | | | | Porformo | nce Information | ın. | | | <u> </u> | <u> </u> | | 1 | |--|-----------------------------|--|---|--|------------------------------|---------------------------------------|---|--|------------------|---|--
---| | Site Name | Site location (city, state) | Were cleanup
goals and
objectives met?
(Yes/No) | Performance data
available
(Yes/No) | | Start date/date
installed | Anticipated end date of current phase | Length of operation | Comments | Cost Information | Future
Work/Current Plans | Contact Information | Information Sources | | Parris Island | Port Royal, SC | Yes | Yes | June 2006: installed six fully screened and seven multi(7) level monitoring wells. Groundwater baseline sampling in June and August 2006. Post-injection groundwater monitoring in Nov/Dec 2006, Jan 2007, March 2007, July 2007, and Jan 2008 | Jun-06
Oct-06 | Sept-07
Oct-08 | Ongoing | Downgradient wells showed a decrease in PCE/TCE with increase in degradation products including significant increases in ethene; Upgradient wells and PMW-5 show continued presence of DNAPL although significant production of ethene in PMW-5 indicates that degradation is ongoing in the area; Significant increases in VFAs (primarily acetic and propionic acids) and TOC; Small decrease in pH, and increases in iron (dissolved and total) | Not available | Conduct sampling and
analysis in July and
October, 2008. | Suzanne O'Hara Geosyntec Consultants 519-822-2230 ext.234 sohara@geosyntec.com Thomas Krug Geosyntec Consultants Mark Watling Geosyntec Consultants Nancy Ruiz U.S. Navy 805-982-1155 nancy.ruiz@navy.mil Jackie Quinn, NASA Chunming Su, EPA 580-436-8638 su.chunming@epa.gov Bob Puls, EPA | Email from Suzanne O'Hara, 19 February 2008
Email from Chunming Su, 6 February 2008
Phone conversation with Thomas Krug on
6/21/06./ Record of Decision for Site 12/SWMU10
- Jericho Island Disposal Area | | Vandenberg Air
Force Base | Santa Maria, CA | N/A | No | Not available | Not available | N/A | N/A | N/A | Not available | Not available | Andrea Leeson
Dept. of Defense
703-696-2118
Andrea.Leeson@osd.mil | Tech News and Trends - March 2004
http://www.clu-
in.org/products/newsltrs/tnandt/view.cfm?issue=0
304.cfm | | Phoenix Goodyear
Airport - North
(Unidynamics)
Phase I | Goodyear, AZ | No | Yes | Sampling at variable time intervals | Jan-08 | Mar-06 | 2 days, post
injection
monitoring for
two months | Limited ORP decrease at injection well, wells & formation clogged by injection. | Not available | 1st test unsuccessful due to problem with delivery of nanoparticles; Conduct further injections using new wells and different solutions, including sodium hydroxide and hexametaphosphate. Injections proposed for Spring 2008. | Glenn Bruck, EPA
415-972-3060
bruck.glenn@epa.gov
Robert J. Ellis, L.G.
ARCADIS-US 248-994-2252
rob.ellis@arcadis-us.com | Ellis, Robert J., Harry S. Brenton, David S. Liles; Michael A. Hansen. 2007. Nanoscale Zero Valent Iron Bench Scale Kinetic and Phase II Injection Testing, Phoenix-Goodyear Airpont North Superfund Site, Goodyear, Airzona. U.S. EPA Desert Remedial Action Technologies Conference Proceedings. http://www.epa.gov/osp/presentations/drat/D-RAT_Workshop_Proceedings_(Oct. 2-4, 07).pdf http://epameetings.com/meeting_details.cfm?meetings.com/meeting_details.cfm?mee | | Phoenix Goodyear
Airport - North
(Unidynamics)
Phase II | Goodyear, AZ | Not available | Post- injection
monitoring
ongoing | Ongoing periodic
monitoring at three
wells (5 feet, 10
feet, and 14 feet
from injection well)
for three to six
months. | Jun-08 | Dec-08 | 3 days, post
injection
monitoring for
three to six
months | Initial 400 mV ORP decrease at 5-
foot downgradient well.
Partial Loss of formation
permeability. | Not available | TBD based on analysis of post-injection monitoring and completion of remedial alternatives evaluation | Robert J. Ellis, L.G.
ARCADIS-US
248-994-2252
rob.ellis@arcadis-us.com | Abstract: "Nanoscale Zero Valent Iron Phase II
Injection Field Pilot Study, Phoenix-Goodyear
Airport North Superfund Site, Goodyear, Arizona"
Authors: R.J. Ellis, H.S. Brenton, D.S. Liles, C.
McLaughlin, N. Wood in U.S. EPA International
Nanotechnology Conference October 5-7, 2008
Proceedings. | | | Site Information | | | | | | Med | lia | | Contaminants | <u> </u> | Technology Inf | ormation | | <u> </u> | |----------------------------|-------------------------------|---------------|--------------------------------------|-----------------|-------|--|----------------------------------|-------------------------|--|--|--|---|---|---|--| | Site Name | Site location (city, state) | EPA
Region | Site type | Cleanup program | Scale | Geology | Media treated | Volume of media treated | Contaminants
treated | Initial contaminant
concentrations | Final contaminant
concentrations | Type of nanoparticle | Technology design | Vendor Information | Cleanup/ remedial objectives and goals | | Industrial Site | Edison, NJ | 2 | Former
Adhesives
Manufacturer | Private | Pilot | Fractured bedrock,
specifically Brunswick
Shale. 4 to 6 feet of soil
comprised of silt and clay
over bedrock | Fractured
Bedrock | Not available | TCA, TCE, DCA,
DCE, chloroethane,
vinyl chloride | Maximum TCA concentration:
37,000 mg/L; 10,000 µg/L
TCA at injection well 1;
presence of DNAPL possible | Decreased to a level below minimum detection limit; ethane concentration in well 1 steadily increased | nZVI (OnMaterial's Z-loy) | 300 lbs nZVI and 1,500
gallons emulsified
vegetable oil comprised
mixture; Injection took
place at two places;
injected at pressures
between 25 and 50 lbs
psi. | Delta Environmental
Consultants, Inc. | Not available | | Manufacturing Site | Passaic, NJ | 2 | Former
Manufacturer | Not available | Pilot | Soils from 0 to 20 feet bgs
composed of high
permeability sands; silt unit
exists from 20 to 26 feet
bgs | | Not available | TCE | 450 to1,400 μg/L | 90 to100% reduction in TCE concentrations | nZVI | 108 ibs of nZVI slurry
and 1,200 ibs of
emulsified oil was
injected into 3 points
within the silt unit;
pneumatic fracturing
injection was used at
two injection points,
hydraulic injection was
used at the third point | Not available | Not available | | Pharmaceutical
Facility | Research Triangle
Park, NC | 4 | Former Waste
Disposal Area | RCRA | Pilot | Durham Triassic Basin
Sandstone interbedded
with siltstone grading
downward into mudstones | Groundwater in fractured bedrock | Not available | PCE, TCE, DCE, VC | : 14,000 μg/L | Over a 90% reduction of pre- injection baseline concentration at injection well and observation well DCE concentrations reduced to near or below groundwater quality standards, with no accompanying increases in vinyl chloride concentrations. | BNP = bi-metallic nano-scale
iron produced in laboratory by
Lehigh University | BNP slurry
concentration of 1.9 g/L;
total slurry volume 6,056
L; average injection rate
0.6 gallons per minute | Pilot test designed and
implemented by Golder
Associates Inc. (Florin
Gheorghiu, Jarrett Elsea) | Source mass reduction | | Nease Chemical | Salem, OH | 5 | Former
Pesticides
Manufacturer | CERCLA | Pilot | Glacial till overburden lying
above fractured
sedimentary bedrock | Groundwater in fractured bedrock | Not available | PCE, TCE, DCE, VC | : 100,000 ug/L | 40-70% reductions in PCE
20-70% reductions in TCE
increases in cis-DCE
net decrease in VOCs low | Golder Associates nZVI: nano-
scale zero-valent iron (nZVI)
produced by Golder Associates
Inc. under license from Lehigh
University | nZVI slurry
concentration of 10 to
20 g/L; Total nZVI
injected 70 Kg | Pilot test designed and
implemented by Golder
Associates Inc. (Stephen Finn,
Allen Kane, Florin Gheorghiu) | Pilot goals: achieve
reduction in target
compounds, collect
information for
design of full scale | | BP Prudhoe Bay
Unit | North Slope, Alaska | 10 | Oil Field | RCRA | Pilot | Organics over alluvial gravels | Soil | Not available | TCA, Diesel fuel | Maximum TCA: 58,444 ug/kg | Shallow Test: TCA reduction of
-60%
Deep Test: TCA reduction of up
90% | BNP | Shallow Test: (soil 0 to 4 ft. bgs), physical mixing with lake water Deep Test: (soil 0 to 7.5 ft. bgs). Pressurized injection via 20 injection pts/ at 6.5 ft. bgs |
Pars Environmental, Inc.
Lehigh University | Not available | | | | | | Performa | nce Informatio | n | | | <u> </u> | | | | |----------------------------|-------------------------------|--|---|---|---------------------------|--|---|---|--|--|--|---| | Site Name | Site location (city, state) | Were cleanup
goals and
objectives met?
(Yes/No) | Performance data
available
(Yes/No) | Maintenance
(O&M) activities/
monitoring system | Start date/date installed | Anticipated end date of current phase | Length of operation | Comments | Cost Information | Future
Work/Current Plans | Contact Information | Information Sources | | Industrial Site | Edison, NJ | Not available | No | Injection well and
two downgradient
monitoring wells
were monitored for
13 months | Not available | Not available | 13 months | N/A | Not available | Not available | Jon Josephs, STL
EPA, Region 2
212-637-4317
josephs.jon@epa.gov | Chu, Peylina, John Mateo, Sam Fogel, John Freim, Clint Bickmore, William Newman, David Crisman. 2005. Rapid In-situ Dechlorination of Solvents by Abiotic and Biotic Mechanisms. | | Manufacturing Site | Passaic, NJ | Not available | Yes | Monitoring weekly
during the first
month, monthly
monitoring
thereafter | Sep-05 | Not available | 6 months | ORP data: Pre-Injection = 375 to
550 mV with a pH between 3 - 4.5
After 1 week levels dropped to less
than -500 and -300 mV
Anaerobic bacteria developed,
anaerobic oxidation coupled to iron
reduction | Not available | Not available | David Liles
ARCADIS
919-544-4535
david.liles@arcadis-us.com | Zhang, WX., N. Durant and D. Elliott. "In situ remediation using nanoscale zero-valent iron: fundamentals and field applications." Battelle Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey California. May 22-25, 2006 | | Pharmaceutical
Facility | Research Triangle
Park, NC | Pilot test
objectives met | Yes | Three monitoring
wells at distances
6.6, 13, and 19
meters
downgradient of
injection well | Sep-02 | Completed
December 2002 | 3 months | ORP data: Initial values about +100 mV; after 3 days -400 mV; maintained at -500 to -400 mV for more than 3 months Treatment radius of influence approximately 63 feet. Limited influence of biological activity | Not available | Full-scale system
design to be completed
in 2008 | Florin Gheorghiu, Golder
Associates 856-793-2005
Igheorghiu@golder.com
Wei-xian Zhang
Lehigh University
610-758-5318
wez3@lehigh.edu | Nanoscale iron particles for environmental remediation: An overview. Wei-xian Zhang. Journal of Nanoparticle Research 5: 323-332. 2003. Applications of Iron Nanoparticles for Groundwater Remediation Wei-xian Zhang and Daniel W. Elliot REMEDIATION Spring 2006 Nanotechnology Takes Root. Robert Glazier, Ramesh Venkatakrishnan, Florin Gheorghiu, Lindsey Walata, Robert Nash, and Wei-xian Zhang, Civil Engineering Magazine May 2003. In-Situ Treatments using Nano-Scale Zero-Valent Iron Implemented in North America and Europe. Florin Gheorghiu, Mace Christian, Ramesh Venkatakrishnan, Wei-xian Zhang, U.S. EPA Workshop on Nanotechnology for Site Remediation U.S. Department of Commerce, Washington DC. October 20 – 21, 2005 | | Nease Chemical | Salem, OH | Yes | No | Not available | 2007 | Not available | Not available | N/A | Pilot cost: \$177,000
Estimated full scale cost - \$19
million | Phase I -Bench, Aug-
2006
Phase II - Field, Nov-
Dec-2006 | Mary Logan EPA
312-886-4699
logan.mary@epa.gov | OEPA Fact Sheet - June 2005 | | BP Prudhoe Bay
Unit | North Slope, Alaska | Not available | Yes | Shallow test: n/a
Deep Test: 4
monitoring wells
installed, monitored
every 24 hours for 6
days | | Shallow Test: Not
available
Deep Test: 30-
Aug-08 | Shallow test: n/a
Deep Test: 40.5
hours | N/A | Not available | Not available | Roberta Hedeen
EPA, Region 10
206-553-0201
hedeen.roberta@epa.gov | Email from Roberta Hedeen to Marti Otto Bimetallic Nanoscale Particle Technology Test, Tuboscope Site Pilot Test Results, Greater Prudhoe Bay, North Slope Alaska, Draft v. 3, May 3, 1007 | | | | | Site Information | on | | | Med | dia | | Contaminants | <u> </u> | Technology Inf | ormation | | l | |-------------------------------------|-----------------------------|---------------|--------------------------|-----------------|-------|---|---------------------------|-------------------------|--|---|---|---|--|--|---| | Site Name | Site location (city, state) | EPA
Region | Site type | Cleanup program | Scale | Geology | Media treated | Volume of media treated | Contaminants
treated | Initial contaminant concentrations | Final contaminant concentrations | Type of nanoparticle | Technology design | Vendor Information | Cleanup/ remedial objectives and goals | | Industrial Plant | Rochester, NY | 2 | Former
Manufacturing | NYSDEC RCRA | Pilot | Glacial till overburden lying
above fractured
sedimentary bedrock. | Groundwater in bedrock | Not available | Methylene chloride,
1,2-dichloropropane,
1,2-dichlorethane | 500,000 ug/L | 50,000 ug/L | Golder Associates nZVI:
produced by Golder Associates
Inc. under license from Lehigh
University | nZVI slurry
concentration of 10 to
20 g/L; Total nZVI
injected 100 Kg; Gravity
feed injection. | Pilot test designed and implemented by Golder Associates Inc. (Allen Kane, Florin Gheorghiu) | Pilot goals: achieve
reduction in target
compounds, collect
information for
design of full scale | | Picatinny Arsenal
Superfund Site | Rockaway Township,
NJ | 2 | Munitions
Arsenal | CERCLA | Pilot | Organics-rich soil | Groundwater | Not available | Carbon tetrachloride,
TCE | 250 ppb of CCI4
87 ppb of TCE | Carbon tetrachloride was 180 ppb
four weeks after injection, but
rebounded to 230 ppb four months
after injection; TCE was 54 ppb
four months after injection | nZVI
(Ferragel Particles) | Injection via two 4-inch
temporary injection
wells. Approx. 120 lbs
of nZVI were injected | Shaw Environmental, Inc. and PARS Environmental, Inc. | 2 ppb carbon
tetrachloride, 1 ppb
TCE | | Valcariter Garrison | Quebec, Canada | NA | National Defense
Site |)
NA | Pilot | Deltaic and Proglacial
Sands | Sands and clayey
silts | / ~4,500 m³ | TCE, DCE, VC | TCE = ~300 ppb, DCE = ~50
ppb | TCE = <5 ppb, DCE = <50 ppb | Golder Associates nZVI with Pd
catalyst, and soy powder
dispersant; nZVI: produced by
Golder Associates Inc. under
license from Lehigh University | 4,550 kg nZVI/BNP injected with Soy Proteir surface modification. Injection using multiple screen wells and packers for unit specific placement. Follow-up with groundwater recirculation and enhanced bioremediation. | Pilot test designed and
implemented by Golder
Associates Ltd (Sylvain
Halins) | Pilot goals: achieve
reduction in TCE
below 5 ppb , collect
information for
design of full scale | | * Residential Site | Ringwood, NJ | 2 | Residence | Private | Full | Contamination extended
to
19 ft. below surface as
well as under deck and
residence. Groundwater
was
approximately 6 feet below
surface. | Groundwater | 275 cubic yards | Home heating oil:
Tetrachloroethene
Bis(2-
Ethylhexyl)phthalate
Benzo[a]Anthracene | Tetrachloroethene - 1.1 ug/L
Bis(2-Ethylhexyl)phthalate -
9.8 ug/L
Benzo[a]Anthracene - 0.14
ug/L | Tetrachloroethene - 1.1 ug/L
Bis(2-Ethylhexyl)phthalate - 9.8
ug/L
Benzo[a]Anthracene - 0.14 ug/L | Nanoscale calcium ions with noble metal catalyst (Nano-Ox TM) | 825 lbs of Nano-Ox was
mixed with water to
form a slurry and direct-
push injected into the
impacted area | Continental Remediation LLC | Reduce contaminant
concentrations to at
or below NJDEP
standards | | * Klockner Road Site | Hamilton Township,
NJ | 2 | Fill Area | Private | Full | Middle Potomac Raritan
Magothy (MPRM) Aquifer;
consisting of water-bearing
soils that extend to the
underlying schist/gneiss
bedrock from 130 to 160
feet bgs | Groundwater | Not available | TCE, DCE, TCA,
DCA | Total VOC: 400-1600 ppb | Reduction in dissolved chlorinated contaminants at concentrations by up to 90% | | NanoFe Plus™ injected in water slurry at concentration up to 30 g/L; Phase I injection totaled 3,000 lbs injected over a period of 20 days at the Northern end of the site, Phase II totaled 1,500 lbs that was injected throughout the northern half of treatment area over 10 days | PARS Environmental, Inc. | Reduce dissolved
chlorinated
contaminant
"hotspots" in the
Perched Water zone
and allow remaining
contaminant
concentrations to be
reduced over time
by Monitored
Natural Attenuation | | | | | | Performa | nce Informatio | n | | | | 1 | | | |-------------------------------------|-----------------------------|--|---|--|---------------------------|---------------------------------------|--|---|------------------|---|--|--| | Site Name | Site location (city, state) | Were cleanup
goals and
objectives met?
(Yes/No) | Performance data
available
(Yes/No) | Maintenance
(O&M) activities/
monitoring system | Start date/date installed | Anticipated end date of current phase | Length of operation | Comments | Cost Information | Future
Work/Current Plans | Contact Information | Information Sources | | Industrial Plant | Rochester, NY | Yes | No | Not available | 2004 | Not available | Not available | N/A | Not available | Not available | Allen Kane, Golder
Associates 610-941-8173
akane @ golder.com | Email communication from Golder Associates and
"Manotechnology and Groundwater
Remediation, A Step Forward in Technology
Understanding," Christian Macé, Florin
Gheorghiu, Steve Desrocher, Allen Kane, Michael
Pupeza, Miroslav Cernik, Petr Kvapil, Ramesh
Venkatakrishnan, and Wei-Xian Zhang, 2006,
Remediation Journal, Wiley Periodicals, Inc.,
Spring 2006. | | Picatinny Arsenal
Superfund Site | Rockaway Township,
NJ | No | Yes | Four monitoring
wells were installed
and four rounds of
sampling conducted | Aug-04 | Final report dated
Aug-2005 | 1 year | N/A | Not available | Decided to utilize
different technology to
remediate site. | Bill Roach, RPM
EPA, Region 2
212-637-4335
roach.bill@epa.gov
Jon Josephs, STL
EPA, Region 2
212-637-4317
josephs.jon@epa.gov | Picatinny Task Order 17, Site 2, Nanoscale ZVI
Pilot Study Report, August 2005. | | Valcariter Garrison | Quebec, Canada | Yes | Yes | Not available | July 2006 | May 2007 | 12 months | ORP levels reached ~-500 mV after injection, remained lower than background for >12 months | Not available | Potential full-scale
implementation in 2009 | Sylvain Hains
Golder Associates
418-781-0285
SHains@golder.com | Implementation of nZVI Reactive Zone for the Treatment of TCE in a Deep Aquifer. Sylvain Hains. Power Point Presentation and Platform Paper. Battelle 2008 | | * Residential Site | Ringwood, NJ | Yes | Yes | Injections were performed on 6/27/07 and the first groundwater samples taken on 7/31/07. Only one compound was marginally over the NJDEP standards. All were below by 9/27/07. | 27-Jun-07 | 27-Sep-07 | 2 DAYS | N/A | Not available | Job completed | Joe Malinchak, Ph.D. Environmental Restoration Services, LLC. 52 Lisa Drive Chatham, NJ 07928 Ph: 973 632-0045 Fax: 973 635-8323 Website: www.ersilccorp.com E-mail: drjoseph1@comcast.net | E-mail from Joe Malinchak, 4 June 2008 | | * Klockner Road Site | Hamilton Township,
NJ | Yes | Yes | ORP, pH and groundwater elevations were monitored during each phase of injection; 1st post injection; 1st post injection monitoring began a week after completion of first injection, 2nd monitoring was performed 2 weeks after phase II injection, 3rd monitoring event was performed a month after 2nd monitoring | Not available | Not available | Phase I - 20 days
Phase II - 10
days | ORP data: Pre-injection= 200 to
450 mV Post-injection= -350 to
450 mV
Nanoiron slurry migrated through
Perched Water zone | Not available | Continue monitoring activities, including collection of groundwater quality data to demonstrate trends in remaining groundwater contamination | H.S. Gill
PARS Environmental, Inc.
609-890-7277 | Full-Scale Nanoiron Injection For Treatment of
Groundwater Contaminated With Chlorinated
Hydrocarbons
http://www.parsenviro.com/reference/klockner-
NGT-III-2005.pdf | | | | | Site Information | on | | | Med | lia | 1 | Contaminants | <u> </u> | Technology Inf | ormation | | 1 | |---------------------------------------|-----------------------------|---------------|--|---|-------|---|---|-------------------------|---|---|---|---|--|--|--| | Site Name | Site location (city, state) | EPA
Region | Site type | Cleanup program | Scale | Geology | Media treated | Volume of media treated | Contaminants
treated | Initial contaminant
concentrations | Final contaminant concentrations | Type of nanoparticle | Technology design | Vendor Information | Cleanup/ remedial objectives and goals | | * Industrial Plant | Rochester, NY | 2 | Former
Manufacturing | NYSDEC RCRA | Full | Glacial till overburden lying above fractured sedimentary bedrock. | Groundwater in
overburden and
weathered top of
bedrock | Not available | TCE | TCE 1,900 ug/L | 55-83% reductions in TCE from 1,900 ug/L to 330 ug/L (an 83% decline), and from 750 ug/L to 340 ug/L (a 55% decline). | Golder Associates nZVI:
produced by Golder Associates
Inc. under license from Lehigh
University | nZVI slurry
concentration of 10 to
20 g/L; Total nZVI
injected 600 Kg;
Pressurized injection
using Geoprobe rig. | Pilot test designed and
implemented by Golder
Associates Inc. (Allen Kane,
Florin Gheorghiu) | Not available | | OU-2B | Alameda Point, CA | 9 | Navy Installation | Navy Installation
Restoration
Program | Pilot | Not available | Groundwater | Not available | TCE | Approximately 1,600 ug/L | Not available (test not yet conducted) | Surface-modified NZVI | Direct injection | Toda Americas | Not available | | Ford Aerospace Site | Palo Alto CA | 9 | Aerospace
Facility | Not available | Pilot | Groundwater encountered
8 to 10 feet bgs.
Water table 6
feet bgs
under confined conditions.
Multiple water-bearing
units.
Sand and gravel zones
separated by low-
permeability clays. | Not available | Not available | PCE, TCE, Freon | PCE in source zone up to 26,000 ug/L PCE in dissolved plume along northern property line at 850ug/L from 10 - 60 ft bgs Offsite sources impact site, with TCE > 70,000 ug/L, Freon 113 > 1,000 ug/L | Not available | Starch-stabilized BNP (Fe/Pd) | Push-pull tests in field batch reactor | Geomatrix | Assess in situ
transport and
reactivity of nZVI
particles | | * Industrial Plant | Sheffield, AL | 4 | Private | N/A | Pilot | Unconsolidated sediments | Groundwater | Not available | PCBs, PCE, TCE,
DCE, VC | 10,000-24,000 ug/L | PCB reduction observed then rebounded. Chlorinated volatiles reduced greater than 90 percent. | Polysaccharide stabilized
bimetallic nanoiron - Golder
Associates, Auburn University or
site production of stabilized nZVI | | Pilot Test designed and
implemented by Golder
Associates Inc. (Jeff Paul and
Feng He) and Auburn
University (Don Zhao) | None Specified | | * Former Chemical
Storage Facility | Winslow Township,
NJ | 2 | Private | CERCLA | Pilot | Unconsolidated sediments | Groundwater | Not available | PCE, TCE, DCE | TCE 3,000 ug/L | One order of magnitude decrease in the injection well | Golder Associates nZVI:
produced by Golder Associates
Inc. under license from Lehigh
University | nZVI slurry
concentration of 5 to 10
g/L; Total nZVI injected
150 Kg; Gravity feed
injection. | Pilot test designed and
implemented by Golder
Associates Inc. (Stephen Finn,
Heather Lin, Florin Gheorghiu) | Source mass reduction | | * Manufacturing
Plant | Trenton, NJ | 2 | Manufacturer | Private | Pilot | Shallow aquifer,
approximately 7 to 25 feet
bgs | Soil and
Groundwater | Not available | PCE, TCE, c-DCE,
vinyl chloride,
chloroform, carbon
tetrachloride, 1,1-
DCE | TCE pre-injection: 445 to
800μg/L
Max TCE: 4600 μg/L | Contaminant concentrations reduced by 1.5% to 96.5% | BNP (Fe/Pd) Particles | MW (DGC-15) served
as the point of injection.
Approximately 1.7 kg of
nanoscale particles
were fed into the test
area over a 2-day
period. First day- 890 L
of 1.5 g/L Second day-
450 L of 0.75 g/L | Not available | Evaluate amenability of synthesized nanoparticles, assess groundwater chemistry changes, and evaluate efficacy of nanoparticles for transformation of chlorinated hydrocarbons | | * Alabama Site | Northern Alabama | 4 | Abandoned
Metal Processing
Plant | Not available | Pilot | Not available | Soil and
Groundwater | Not available | PCE, TCE, and
PCBs | TCE: MW-1 (1655 ppb)
MW-2 (3710 ppb) | TCE: MW-1 (72 ppb) and MW-2
(less than 10 ppb) | Carboxymethyl cellulose (CMC)
stabilized zero-valent iron | Test area was approximately 135 square feet. 150 gallons of 0.2 g/L Fe-d nanoparticle suspension was synthesized on site and gravity fed into the test area over a 4 hour period | Collaboration between Golder
Associates. Fisher, Acros
Organics, and Strem (supplier
of nanoparticles) | Confirm effectiveness of the nanoparticles, mobility of the particles in soil, and ability to degrade contaminants | | | | | | Performa | nce _{Information} | ` | | | | | | | |---------------------------------------|-----------------------------|--|---|--|---|---------------------------------------|--|---|---|--|--|--| | Site Name | Site location (city, state) | Were cleanup
goals and
objectives met?
(Yes/No) | Performance data
available
(Yes/No) | Maintenance
(O&M) activities/
monitoring system | Start date/date | Anticipated end date of current phase | Length of operation | Comments | Cost Information | Future
Work/Current Plans | Contact Information | Information Sources | | * Industrial Plant | Rochester, NY | Yes | No | Not available | 2006 | Not available | Not available | N/A | Not available | Post-remediation monitoring | Allen Kane, Golder
Associates 610-941-8173
akane@golder.com | Email communication from Golder Associates | | OU-2B | Alameda Point, CA | N/A | No - test not yet conducted | N/A | N/A | N/A | N/A | N/A | Not available | Not available | Mark Losi
Tetra Tech ECI
949-756-7516
mark.losi@tteci.com | Mark Losi | | Ford Aerospace Site | Palo Alto CA | N/A | No | Not available | 2006 | 31-Jan-08 | Not available | N/A | Assuming \$50 per pound, 1 g
Fe/L, cost for treating 1 cy =
\$21 (materials costs only) | Decided to utilize
different technology to
remediate site. | Matt Dodt, Ford Motor Co.,
312-248-7554
Lester Feldman,
GeoMatrix, 510-663-4240 | Local Applications of Innovative Groundwater
Cleanup Using Zero Valent Metals
http://www.epa.gov/region09/science/ZV/metals-
for-GW-Cleanup.pdf
Interim <i>in situ</i> groundwater remediation, 21
August 06, appendices D and E | | * Industrial Plant | Sheffield, AL | Not available | Yes | Chemicals taken to
site, set up
preparation at well
head, injected in
one point, monitored
at 3 locations | Feb-07 | Not available | Not available | N/A | Not available | Not available | Jeff Paul, Golder Associates
Inc. 770-492-8150
jpaul@golder.com | Email communication from Golder Associates | | * Former Chemical
Storage Facility | Winslow Township,
NJ | Not available | Yes | Not available | Apr-05 | Completed | 3 Months | ORP data: Initial values about -100
mV; after injection maintained at -
300 mV for more than 3 months
The nZVI had a limited radius of
influence | Not available | Not available | Heather Lin, Golder
Associates
856-793-2005
hlin@golder.com | Email communication from Golder Associates | | * Manufacturing
Plant | Trenton, NJ | Yes | Yes | Not available | Phase I - May-
00 Phase II -
Jun-00 | Not available | Phase I - 45 days
Phase II - 23
days | ORP data: Pre-Injection = 150 to 250 mV with a pH between 4.5 and 5.5 The nanoparticle plume traveled at an apparent velocity of 0.8 m/d, exceeding the natural seepage velocity of 0.3 m/d ORP and pH changes following injection will aid in growth of anaerobic microorganisms | Not available | Conduct laboratory and field tests for fate and transport; assess effectiveness of nanoparticles on other contaminants, and develop modeling tools to characterize subsurface transport of nanoparticles | H.S. Gill
PARS Environmental, Inc.
609-890-7277 | Field Assessment of Nanoscale Bimetallic
Particles for Groundwater Treatment
Environmental Science & Technology Vol. 35, No.
24, 2001 | | * Alabama Site | Northern Alabama | Yes | Yes | Not available | Not available | Not available | 29 days of field
injection and
monitoring - 1
full year
including
preparation | ORP data: Reduced from -40 mV
to -254 mV in MW-1 | Not available | Not available | Don Zhao
Auburn University
334-844-6277
dzhao@eng.auburn.edu | Project Completion Report: Pilot-Testing an
Innovative Remediation Technology For In-Situ
Destruction of Chlorinated Organic Contaminants
in Alabama Solis and Groundwater Using a New
Class of Zero Valent Iron Nanoparticles. Auburn
University. June 2007. |